System Design and Methodology /
Embedded Systems Design

[Il. Dataflow Models

TDTS07/TDDIO8
VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen for datavetenskap (IDA)
Linkopings universitet

1 of 63

DATAFLOW MODELS

. Dataflow Models: an Example
. Kahn Process Networks: a Deterministic Model
. Synchronous Dataflow: Statically Schedulable Dataflow Models

. Deriving a static Schedule for Synchronous Dataflow Models

2 of 98

Dataflow Models

m Systems are specified as directed graphs where:
0 nodes represent computations (processes);

ad arcsrepresent totally ordered sequences (streams) of data (tokens).

3 of 98

Dataflow Models

m Systems are specified as directed graphs where:
0 nodes represent computations (processes);

ad arcsrepresent totally ordered sequences (streams) of data (tokens).

m Depending on their particular semantics, several models of computation based
on dataflow have been defined:

d Kahn process networks
0 Dataflow process networks
a9 Synchronous dataflow

4 of 98

Dataflow Models

Systems are specified as directed graphs where:
0 nodes represent computations (processes);

ad arcsrepresent totally ordered sequences (streams) of data (tokens).

Depending on their particular semantics, several models of computation based
on dataflow have been defined:

d Kahn process networks
0 Dataflow process networks
a9 Synchronous dataflow

Dataflow models are suitable for signal-processing algorithms:
0 Code/decode, filter, compression, etc.

0 Streams of periodic and regular data samples

5of 98

Dataflow Models

Process p1(inint a, out int x, out int y) {

channelint 1, O, C1, C2, C3, C4;
p1(l, C1, C2);

p2(C1, C3);

p3(C2, C4);

p4(C3, C4, O);

m The internal computation of a
process can be specified in any
programming language (e.g. C).

This is called the host language.

6 of 98

Kahn Process Networks (KPN)

Processes communicate by passing data tokens through unidirectional FIFO
channels.

Writes to the channel are non-blocking.

Reads are blocking:
0 the process is blocked until there is sufficient data in the channel

7 of 98

Kahn Process Networks (KPN)

Processes communicate by passing data tokens through unidirectional FIFO
channels.

Writes to the channel are non-blocking.

Reads are blocking:
0 the process is blocked until there is sufficient data in the channel

|

A process that tries to read from an empty

channel waits until data is available. It cannot

ask whether data is available before reading mm)p DETERMINISM
and, for example, if there is no data, decide not

to read that channel.

8 of 98

Kahn Process Networks

m Kahn process networks are deterministic:

0 For a given sequence of inputs, there is only one possible sequence of
outputs (regardless, for example, how long time it takes for a certain
computation or communication to finish).

Looking only at the specification (and not knowing anything about

implementation) you can exactly derive the output sequence
corresponding to a given input sequence.

9 of 98

Kahn Process Networks

m More on read and write limitations

a A process cannot wait for data on more than one channel at a time

a9 Only a single process is allowed to read from a certain channel

s What if the output data has to be sent to more than one process?

0 Data must be duplicated inside processes

m This limited model of computation implies:

7 More modeling effort for complex systems

0J Retained determinism!

10 of
98

Kahn Process Networks: an Example

KPN model of encoder for Motion JPEG (M-JPEG) video compression format:

HeaderlInfo B
/ \
b1 _Block ,/pe7) Block /o) Block __@ Packets _{ideo
o/ \ Out
A m
g n
o S |5
2 2 W
©
o R
L

BitRate

StatisticsF

TableslInfo

11 of
98

Kahn Process Networks: a Simpler Example

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then

x.send(k);
else
y.send(k);
endif
endloop } i'
Process p2(in int a, out int x){ pa\
int k; C1/ \C2

loop
k = a.receive();

x.send(k); <E§§> pi?\

endloop } :
C3 / C4
Process p3(in int a, in int b, out int x){ ;
int k; pé
bool sw = true; _/
loop lC)
if sw then
k = a.receive();
else
k = b.receive(); Channel int I, 0, C1, C2, C3, (C4;
endif pl(I, C1, C2);
x.send(k); p2(C1, C3);
sw = lsw; p2(C2, C4);
endloop } p3(C3, C4, 0);

13 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then

x.send(k);
else
y.send(k);
endif 5
endloop } i'
Process p2(in int a, out int x){ pa\
int k; C1 \?2
loop
k = a.receive(); -
x.send(k); (Ef?) piﬁ
endloop } \
C3 / C4
Process p3(in int a, in int b, out int x){ ,
int k; | Fﬁ§;
bool sw = true; /

loop l()
if sw then
k = a.receive();

else
k = b.receive(); Channel int I, 0, C1, C2, C3, (C4;
endif pl(I, C1, C2);
x.send(k); p2(C1, C3);
sw = lsw; p2(C2, C4);
endloop } p3(C3, C4, 0);

14 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif 8
endloop }

x.send(k);
endloop }

¢|
Process p2(in int a, out int x){ pﬁ\
int k; C1 ¥2
loop
k = a.receive();)
o2

c3. /c4

Process p3(in int a, in int b, out int x){
int k; | Fﬁ§
bool sw = true; /
loop l()
if sw then
k = a.receive();
else

k = b.receive(); Channel int I, 0, C1, C2, C3, (C4;
endif pl(I, C1, C2);
x.send(k); p2(C1, C3);
sw = lsw; p2(C2, C4);
endloop } p3(C3, C4, 0);

15 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

p

|

¢|

p1)
Clsg xzz
I
C3\ 5 C4

. [jéﬁ

16

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

16 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

;

|

I

p1)
C1 \CZ
@

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

21

g 58 C4
. F3?§
O

l

17 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif 11
endloop }

x.send(k); (/

|

¢|
Process p2(in int a, out int x){ pﬁ\
int k; C1 21&:2
loop
k = a.receive();)
P2 b2,

endloop }

bool sw = true;
loop

if sw then

k = a.receive(); 8

C3\ 54 C4
Process p3(in int a, in int b, out int x){ _L_
int k; Fjéﬁ
/
lo

else

k = b.receive(); Channel int I, 0, C1, C2, C3, (C4;
endif pl(I, C1, C2);
x.send(k); p2(C1, C3);
sw = lsw; p2(C2, C4);
endloop } p3(C3, C4, 0);

18 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then

x.send(k);
else
y.send(k);
endif 5
endloop } il
Process p2(in int a, out int x){ pa\
int k;
loop C1 11§:2
k = a.receive();)
x.send(k); (Ef?) pi?\
endloop } \
C3\ 214 C4
Process p3(in int a, in int b, out int x){ ;
int k; ' p:ﬁ

bool sw = true; /
loop l()

if sw then

k = a.receive(); S
else 8
k = b.receive(); Channel int I, 0, C1, C2, C3, (C4;
endif pl(I, C1, C2);
x.send(k); p2(C1, C3);
sw = lsw; p2(C2, C4);
endloop } p3(C3, C4, 0);

19 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

8

¢|

p1)

C1 5\02
(p2 2
@ P

C3' 214 C4

. pf’i
lo

5
38

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

20 of 98

Process pl(in int a, out int x,
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

out int y){

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

21 of 98

Process pl(in int a, out int x,
int k;
loop
k = a.receive();
if k mod 2 0 then
x.send(k);
else
y.send(k);
endif
endloop }

out int y){

Process p2(in int a, out int x){

int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

22 of 98

Process pl(in int a, out int x,
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

out int y){

Process p2(in int a, out int x){

int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

3

¢|

p1)

C140 YZ

P2) (p2)
C4

16 1e

p’of‘_

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

00 U100
O

21 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

22 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

23 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

24 of 98

Process pl(in int a, out int x, out int y){

int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){

int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

25 of 98

Process pl(in int a, out int x, out int y){
int k;
loop
k = a.receive();
if k mod 2 == 0 then
x.send(k);
else
y.send(k);
endif
endloop }

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

¢|
p1)
C1 x;z
D 2
\@ 7pZ

C3 3

Channel int I,
pl(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

s C4

p3)

l()
9)
0
11
16
21
38
5
8 28 of 98

Process pl(in int a, out int x,
int k;
loop
k = a.receive();
if k mod 2 0 then
x.send(k);
else
y.send(k);
endif
endloop }

out int y){

Process p2(in int a, out int x){
int k;
loop
k = a.receive();
x.send(k);
endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop
if sw then
k = a.receive();
else
k = b.receive();
endif
x.send(k);
sw = !sw;
endloop }

C1

"2,
c:\

Channel int I,
pl(I, C1, C2);
p2(C1l, C3);
p2(C2, C4);
p3(C3, C4, 0);

0, C1, C2, C3, C4;

\@\H
j_

(@)

Q100N 010020 W N
— —

@,
N

p2)
.
3s C4

©
\\OO

Ol
O

o 1IN =0
0O

29 of 98

Kahn Process Networks:
Determinism

m For the same input sequence, the produced output sequence is always the same

m These factors entirely determine the outputs of the system:

d Processes
0 The network

o Initial tokens

m Timing of the processes and channels do not affect the outputs of the system

30 of 98

The Modified Network

Process gq3(in int a, in int b, out int x){ m Consider q3 instead of p3:
. d Process q3 first tries channel a or
ool sw = true;

loop b, depending on sw, like in the

if sw then . .
k = a.receive() on timeout(d) do previous version.

= |

W = TSW, 0 But, instead of blocking, if
continue; . .

else nothing comes after a timeout d, q3
k = b. i ti t d . .
< =_Pireceive() on timeout(d) do will switch to read a token from the
continue; other channel.

endif

x.send(k);

sw = lsw;

endloop } ‘

= With g3 we do not have a Kahn
process network.

m The system is not deterministic.

28 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

/pzj\@

32 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

33 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

34 of 98

The Modified Network

With an implementation such
11 that channel C1 is very fast
and C2is very slow.

}1
/p2 \%2\

c3 8
Re

35 of 98

1

/p2

21

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

36 of 98

The Modified Network

With an implementation such
that channel C1 is very fast

I
\\ and C2 is very slow.
p1
C1 21\§i /
45
fpg
3 C4

N
C

(p2

g3

3 O

37 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

38 of 98

1

/p2

o A~

21

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

39 of 98

1

/p2

o A~

21

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

40 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2 is very slow.

41 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

fﬂ
/p2 Xp?

/

42 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

fﬂ
/p2 Xp?

5C4
q3

4 @

8

43 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

/p‘gxp?

/

44 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

/p‘gxp?

/

45 of 98

The Modified Network

With an implementation such
| that channel C1 is very fast
and C2 is very slow.

p1

/
f < g
p2) (p2

\JHJ
C3\ 21sC4
i

)
4

oo

46 of 98

o h~OIN

/gxp?

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

_/

47 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

/gxp?

_/

o h~OIN

48 of 98

o h~OIN

The Modified Network

With an implementation such
that channel C1 is very fast
and C2 is very slow.

49 of 98

The Modified Network

With an implementation such
that channel C1 is very fast
and C2is very slow.

A

50 of 98

The Modified Network

—_—

With an implementation such
that channel C1 is very fast
and C2is very slow.

A

O'IOOI\)—\-P
—

51 of 98

The Modified Network

4 4

11 11

21 21
With an implementation such 8
that channel C1 is very fast | 5

and C2is very slow.
p1 P’
X C1 C2
/
P2 ﬁ%
C3 C4 C3 C4

q3 / q3

0O With an implementation such O\Z
that channel C1 is very slow
1 and C2 is very fast. 11

52 of 98

Scheduling of Kahn Process Networks

m Letusimagine we have to implement the

system on a single processor architecture.

Let’s try the following static schedule:

P24

P22

=

—

53 of 98

Scheduling of Kahn Process Networks

m Letusimagine we have to implement the
system on a single processor architecture.

Let’s try the following static schedule:

Q p1 P24 P22 p3)

The system will block!

54 of 98

Scheduling of Kahn Process Networks

And all other schedules will block:

C1

P2

C3

)

p_3
O

C2

=

—

55 of 98

Scheduling of Kahn Process Networks

And all other schedules will block:

I Q o) P2o P21 p3)
p1

C1 C2

@ Q p1 P21 p3 P2)
C3 C4

56 of 98

Scheduling of Kahn Process Networks

And all other schedules will block:

I Q p1 P2o P21 p3)
01

C1 C2

57 of 98

Scheduling of Kahn Process Networks

Kahn process networks are dynamic dataflow models: their behavior is data
dependent; depending on the input data one or the other process is activated.

Kahn process networks cannot be scheduled statically = It is not possible to derive,
at compile time, a sequence of process activations such that the system does not
block under any circumstances.

Kahn process networks have to be scheduled dynamically = which process to
activate at a certain moment has to be decided, during execution time, based on
the current situation.

There is an overhead in implementing Kahn process networks.

58 of 98

Kahn Process Networks

m Another problem: memory overhead with buffers.
Potentially, it is possible that the memory need for buffers grows unlimited.

Possible approaches:

- For some applications and restrictions on inputs, FIFO bounds can be
mathematically derived in design to avoid FIFO overflows

- FIFO bounds can be grown on demand

- Blocking writes can be used so that a process blocks if a FIFO is full (this
deviates from the KPN semantics and may lead to deadlocks, which add further
implementation issues)

m Kahn process networks are relatively strong in their expressive power but
sometimes cannot be implemented efficiently.

|

Introduce more limitations so that you can get efficient implementations.

59 of 98

Synchronous Dataflow Models

Dataflow process networks are a particular case of Kahn process networks.

A particular kind of dataflow process networks, which can be efficiently
implemented, are synchronous dataflow (SDF) networks.

Synchronous dataflow networks are Kahn process networks with restriction:

a At each activation (firing) a process produces and consumes a fixed
number of tokens on each of its outgoing and incoming channels.

0 Fora process to fire, it must have at least as many tokens on its input
channels as it has to consume.

60 of 98

Synchronous Dataflow Models

m Synchronous dataflow models are less expressive than Kahn process
networks:

a0 With SDF models it is impossible to express conditional firing, where a
process’ firing depends on a certain condition; SDF are static dataflow
models.

61 of 98

Synchronous Dataflow Models

Synchronous dataflow models are less expressive than Kahn process
networks:

a0 With SDF models it is impossible to express conditional firing, where a

process’ firing depends on a certain condition; SDF are static dataflow
models.

For the above reduced expressiveness, however, we get two nice features of SDF
models:

1. Possibility to produce static schedules.
2. Limited and predictable amount of needed buffer space.

62 of 98

Synchronous Dataflow Models

m Arcs are marked with the number of
tokens produced or consumed.

m Thisis a simple “single-rate” system:
every process is activated one single
time before the system returns to its
initial state.

63 of 98

Synchronous Dataflow Models

m Arcs are marked with the number of

1 tokens produced or consumed.
A) . .
N1 m This is a simple “single-rate” system:
1 every process is activated one single
c time before the system returns to its
| initial state.
Ty Possible static schedule:
KD ossible static schedule:

)

64 of 98

Synchronous Dataflow Models

Our example from Lecture 1:

T

7]

Ts

65 of 98

Deriving a static schedule for SDF

m For a correct synchronous dataflow network

1 2
@ ? there exists a sequence of firings which returns
2 / the network in its original state.
| This sequence represents a static schedule
which has to be repeated in a cycle.

m The schedule is such that a finite amount of
memory is required (no infinite buffers)

Problem
How to derive such a cyclic schedule?

67 of 98

Deriving a static schedule for SDF

2

m Along the periodic sequence of firing, on each
arc the same number of tokens has to be
produced and consumed.

68 of 98

Deriving a static schedule for SDF

m Along the periodic sequence of firing, on each
arc the same number of tokens has to be
produced and consumed.

a, b, ¢, d: the number of firings, during a
period, for process A, B, C, D.

Balance equations:

2a-4b =0
b-2c =0
2c- d=0
2b-2d =0

2d- a=0

69 of 98

Deriving a static schedule for SDF

m Along the periodic sequence of firing, on each
arc the same number of tokens has to be
produced and consumed.

a, b, ¢, d: the number of firings, during a
period, for process A, B, C, D.

Balance equations:

2a-4b =0 - -

b-2 =0 2—400"a‘
et T 01 20|,
2¢- d=0 00 2 -1[||=0
2b-2d =0 020_26

d
2d- a=0 -1 0 0 2|--

70 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

['q=0

Balance equations:
2a-4b =0 - -
b-2c=0
2c- d=0
2b-2d =0
2d- a=0 -1

L H S Q

(N
|
|

71 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

I'q=0
/q

topology matrix
of the graph

Balance equations:

2a-4b =0 - R
b -2 = 0 2 40 0 .

- 0 1 20},
2¢- d=0 00 2| =0
2b-2d =0 0 2 0 -2 ¢

d
2d- a=0 -1 0 0 2|--

72 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

['q=0
topology matrix
fth h
orthe grap (firing vector)
Balance equations:
2a-4b =0 - -
b - 26 = 0 2 40 0 f-’aﬁw
40T 01 20|,
2¢- d=0 0 0 2 -1 |/=0
2b-2d =0 0 2 0 =22 p
2d- a =0 -1 0 0 2|~

73 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

Fq \ 0 \(vector of zeros)

firing vector

topology matrlx
of the graph

Balance equations:
2a-4b =0 - -
b-2c=0
2c- d=0
2b-2d =0
2d- a=0 -1

S O O

L H S Q

(N
|
|

74 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

['q=0
/ q \ vector of zeros

topology matrix \
f th h
orthe grap firing vector

m [fthere is no g=0 which satisfies the equation
above = there is no static schedule (there is a
rate inconsistency between processes).

Balance equations:

2a-4b =0 - -
b-2 =0 2—400"a‘
et T 01 20|,
2¢- d=0 00 2 -1[||=0
2b-2d =0 020_26
d
2d- a=0 -1 0 0 2|--

75 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:
['q=0
m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is

Balance equations: activated during one period.
2a-4b =0 i :
e 240 0>
i 0120,
2c- d=0 00 21|/ | =0
2b-2d =0 0 2 0 oll€
d
2d- a =0 10 0 2|

76 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAABCDD)

77 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAABCDD)

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

78 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

&)
The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

79 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

C—)
The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

80 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

. 2rc)
;. = rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

Ca—)
The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

81 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

. 2rc)
;. = rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

S— >

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

82 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

. 2rc)
;. = rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

ST =S

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

83 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

..2/C
;’ pe=! rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAAB)

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

84 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ g rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAABC)

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

85 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAABCD)

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

86 of 98

Deriving a static schedule for SDF

For a given SDF network (graph) we get equation:

1. 2¢
;’ 2 rq=0
5 m Among possible solutions for vector q, we are

Interested in the smallest positive integer vector
(smallest sum of the elements).

For our SDF graph, this solution is:
a=4, b=2, c=1, d=2.

a, b, ¢, d indicate how often each task is
activated during one period.

A possible schedule:

QAABAABCDD)

The schedule is possible, without deadlock, only if 4 initial tokens are provided
on the channel D — A.

87 of 98

Deriving a static schedule for SDF

Solution: a=3, b=2, c=1.

2.3 0
02 4

10 -3

88 of 98

Deriving a static schedule for SDF

2.3 0
02 4
103

o S 8
|
=)

Solution: a=3, b=2, c=1.

Possible schedule:

A|lA|A|B|B|C
& —)

89 of 98

Deriving a static schedule for SDF

90 of 98

Deriving a static schedule for SDF

>
W
=
~|l o N>

91 of 98

Deriving a static schedule for SDF

A A
AB|0|2 (4
BC|o|0 |0
AC|0|1 |2

92 of 98

Deriving a static schedule for SDF

A|A A
AB|(0(2 (4 |6
BC|o|0 (0|0
AC|0[1 (2|3

93 of 98

Deriving a static schedule for SDF

A|A|A|B
AB(0(2 (4 (6|3
BC|o|0 (0|02
AC|0|1 (2|3 |3

94 of 98

Deriving a static schedule for SDF

A|A|A|B|B
AB(0(2 (4 (6|3 |0
BC|o|o (0|0 (2|4
AC|0|1|2|3|3|3

95 of 98

Deriving a static schedule for SDF

A|A|A|B|B|C
AB(0|2 |46 |3|0|0
BCc|lojo(o|0(2(4 |0
AC|0{1 (2|3 (3|3 |0

96 of 98

Deriving a static schedule for SDF

A|A|A|B|B|C
ABOZ41@300
Bclofo o [o]2[d]o
Aco1233|@o

Buffer space needed:
A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared

97 of 98

Deriving a static schedule for SDF

A[A| BB]|C
—)

A|A|A[B|B|C
AB[O[2 [4 6300
BC[0]0 [0 [0[2]4 |0
aclof1[2[3]3]3]0
total 0 [3 [6 {9)[8[7 [0

Buffer space needed:

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared 9
if buffers shared

98 of 98

Deriving a static schedule for SDF

3,/B 2]
5 ‘ 4 2-3 0||a
A & 02 —4|lpl =0
1 10 -3]|c

Solution: a=3, b=2, c=1.

Possible schedule: Buffer space needed:
AlTAIAIBIBIC A-B: 6; B-C: 4; A-C: 3;
) Total: 13 if buffers not shared 9
if buffers shared

Another schedule: Buffer space needed:
AlAIBIAIBIC A-B: 4: B-C: 4; A-C: 3;
) Total: 11 if buffers not shared 8
if buffers shared

99 of 98

Deriving a static schedule for SDF

m With this example we have a rate inconsistency = No static, periodic
schedule with finite buffers is possible.

A ey

1 1-1 0]|a
LZX/ 01 —1||p =0

O 2 0 —1]|c]

m There is no solution for the equation, different from a=b=c=0.

m Itis easy to observe that on the arc A — C, tokens continuously accumulate.

100 of
98

Treatment of Time

Dataflow systems are asynchronous concurrent.

a9 Events can happen at any time.
a9 There exists a a partial order of events:

- Producing a token by A strictly precedes
consuming a token by B and C.

- There is no order between consuming a
token by B and consuming a token by C.

" e
@3,/

/
S

-

101 of
98

	Slide 1: System Design and Methodology / Embedded Systems Design III. Dataflow Models
	Slide 2: DATAFLOW MODELS
	Slide 3: Dataflow Models
	Slide 4: Dataflow Models
	Slide 5: Dataflow Models
	Slide 6: Dataflow Models
	Slide 7: Kahn Process Networks (KPN)
	Slide 8: Kahn Process Networks (KPN)
	Slide 9: Kahn Process Networks
	Slide 10: Kahn Process Networks
	Slide 11: Kahn Process Networks: an Example
	Slide 12: Kahn Process Networks: a Simpler Example
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Kahn Process Networks: Determinism
	Slide 31: The Modified Network
	Slide 32: The Modified Network
	Slide 33: The Modified Network
	Slide 34: The Modified Network
	Slide 35: The Modified Network
	Slide 36: The Modified Network
	Slide 37: The Modified Network
	Slide 38: The Modified Network
	Slide 39: The Modified Network
	Slide 40: The Modified Network
	Slide 41: The Modified Network
	Slide 42: The Modified Network
	Slide 43: The Modified Network
	Slide 44: The Modified Network
	Slide 45: The Modified Network
	Slide 46: The Modified Network
	Slide 47: The Modified Network
	Slide 48: The Modified Network
	Slide 49: The Modified Network
	Slide 50: The Modified Network
	Slide 51: The Modified Network
	Slide 52: The Modified Network
	Slide 53: Scheduling of Kahn Process Networks
	Slide 54: Scheduling of Kahn Process Networks
	Slide 55: Scheduling of Kahn Process Networks
	Slide 56: Scheduling of Kahn Process Networks
	Slide 57: Scheduling of Kahn Process Networks
	Slide 58: Scheduling of Kahn Process Networks
	Slide 59: Kahn Process Networks
	Slide 60: Synchronous Dataflow Models
	Slide 61: Synchronous Dataflow Models
	Slide 62: Synchronous Dataflow Models
	Slide 63: Synchronous Dataflow Models
	Slide 64: Synchronous Dataflow Models
	Slide 65: Synchronous Dataflow Models
	Slide 67: Deriving a static schedule for SDF
	Slide 68: Deriving a static schedule for SDF
	Slide 69: Deriving a static schedule for SDF
	Slide 70: Deriving a static schedule for SDF
	Slide 71: Deriving a static schedule for SDF
	Slide 72: Deriving a static schedule for SDF
	Slide 73: Deriving a static schedule for SDF
	Slide 74: Deriving a static schedule for SDF
	Slide 75: Deriving a static schedule for SDF
	Slide 76: Deriving a static schedule for SDF
	Slide 77: Deriving a static schedule for SDF
	Slide 78: Deriving a static schedule for SDF
	Slide 79: Deriving a static schedule for SDF
	Slide 80: Deriving a static schedule for SDF
	Slide 81: Deriving a static schedule for SDF
	Slide 82: Deriving a static schedule for SDF
	Slide 83: Deriving a static schedule for SDF
	Slide 84: Deriving a static schedule for SDF
	Slide 85: Deriving a static schedule for SDF
	Slide 86: Deriving a static schedule for SDF
	Slide 87: Deriving a static schedule for SDF
	Slide 88: Deriving a static schedule for SDF
	Slide 89: Deriving a static schedule for SDF
	Slide 90: Deriving a static schedule for SDF
	Slide 91: Deriving a static schedule for SDF
	Slide 92: Deriving a static schedule for SDF
	Slide 93: Deriving a static schedule for SDF
	Slide 94: Deriving a static schedule for SDF
	Slide 95: Deriving a static schedule for SDF
	Slide 96: Deriving a static schedule for SDF
	Slide 97: Deriving a static schedule for SDF
	Slide 98: Deriving a static schedule for SDF
	Slide 99: Deriving a static schedule for SDF
	Slide 100: Deriving a static schedule for SDF
	Slide 101: Treatment of Time

