
System Design and Methodology /

Embedded Systems Design

III. Dataflow Models

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet

DATAFLOW MODELS

2 of 98

1. Dataflow Models: an Example

2. Kahn Process Networks: a Deterministic Model

3. Synchronous Dataflow: Statically Schedulable Dataflow Models

4. Deriving a static Schedule for Synchronous Dataflow Models

Dataflow Models

3 of 98

◼ Systems are specified as directed graphs where:

 nodes represent computations (processes);

 arcs represent totally ordered sequences (streams) of data (tokens).

Dataflow Models

4 of 98

◼ Systems are specified as directed graphs where:

 nodes represent computations (processes);

 arcs represent totally ordered sequences (streams) of data (tokens).

◼ Depending on their particular semantics, several models of computation based

on dataflow have been defined:

 Kahn process networks

 Dataflow process networks

 Synchronous dataflow

 - - - - - - -

Dataflow Models

5 of 98

◼ Systems are specified as directed graphs where:

 nodes represent computations (processes);

 arcs represent totally ordered sequences (streams) of data (tokens).

◼ Depending on their particular semantics, several models of computation based

on dataflow have been defined:

 Kahn process networks

 Dataflow process networks

 Synchronous dataflow

 - - - - - - -

◼ Dataflow models are suitable for signal-processing algorithms:

 Code/decode, filter, compression, etc.

 Streams of periodic and regular data samples

Dataflow Models

6 of 98

Process p1(in int a, out int x, out int y) {
...............

}

Process p2(in int a, out int x) {
...............

}

Process p3(in int a, out int x) {
...............

}

Process p4(in int a, in int b, out int x) {
...............

}

channel int I, O, C1, C2, C3, C4;

p1(I, C1, C2);

p2(C1, C3);

p3(C2, C4);

p4(C3, C4, O);

p3

I

p1

C1 C2

p2

C3 C4

p4

O

◼ The internal computation of a

process can be specified in any

programming language (e.g. C).

This is called the host language.

Kahn Process Networks (KPN)

7 of 98

◼ Processes communicate by passing data tokens through unidirectional FIFO

channels.

◼ Writes to the channel are non-blocking.

◼ Reads are blocking:

 the process is blocked until there is sufficient data in the channel

Kahn Process Networks (KPN)

8 of 98

◼ Processes communicate by passing data tokens through unidirectional FIFO

channels.

◼ Writes to the channel are non-blocking.

◼ Reads are blocking:

 the process is blocked until there is sufficient data in the channel

A process that tries to read from an empty

channel waits until data is available. It cannot

ask whether data is available before reading

and, for example, if there is no data, decide not

to read that channel.

DETERMINISM

Kahn Process Networks

9 of 98

◼ Kahn process networks are deterministic:

 For a given sequence of inputs, there is only one possible sequence of

outputs (regardless, for example, how long time it takes for a certain

computation or communication to finish).

Looking only at the specification (and not knowing anything about

implementation) you can exactly derive the output sequence

corresponding to a given input sequence.

Kahn Process Networks

10 of

98

◼ More on read and write limitations

 A process cannot wait for data on more than one channel at a time

 Only a single process is allowed to read from a certain channel

◼ What if the output data has to be sent to more than one process?

 Data must be duplicated inside processes

◼ This limited model of computation implies:

 More modeling effort for complex systems

 Retained determinism!

Kahn Process Networks: an Example

11 of

98

KPN model of encoder for Motion JPEG (M-JPEG) video compression format:

DCT Video
Out

P2

P1 Q VLE

S
ta

ti
s
ti
c
s
B

E
n
d
O

fF
ra

m

Q
T

a
b
le

Block Block Block Packets

BitRate CtrlF1

StatisticsF

TablesInfo

HeaderInfo

10 of 98

Kahn Process Networks: a Simpler Example

p2

I

p1

p3

O

C1 C2

p2

C3 C4

p2

13 of 98

I

p1

p3

O

C1 C2

p2

C3 C4

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p1

14 of 98

p2

I

p3

O

C1 C2

p2

C3 C4

5

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

I

15 of 98

p3

O

C1

p2

C3 C4

8

p1

5 C2

p2

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

16 of 98

C2

C3 C4

I

p1

C1 8

p2

5

p3

O

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

17 of 98

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

O

21
I

C1

p1

C2

p2

C3 8 5

p2

C4

p3

p2 p2

8

18 of 98

C1

C3 C45

p3

O

11
I

p1

21 C2

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2 p2

5
8

19 of 98

I

C1 C2

C3 C4

5

21

p3

O

p1

11

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

C1

5
8

20 of 98

p2

C3

8
I

C421

p3

O

p1

5 C2

p2

11

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

I

C1

p1

8 5 C2

p2

C3
11

21

p2

C4

p3

21 of 98

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

O

5
8

0

16

p2

5
8

22 of 98

I

p3

O

C2

0

p1

C1 16

p2

C3 C4
5

11
21
8

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

8
5
8

21 of 98

I

p3

O

C2

3

5

p1

C1 0

p2

16
21

C3 C411

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

I

21
8
5
8

22 of 98

p3

O

C1

7

p1

3 C2

p2

16

5
C411

0
C3

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p3

O

16
21
8
5
8

23 of 98

C1

p2

C3

I

p1

7 C2

p2
3

C4
5

11
0

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

8

24 of 98

I

p1

C1 C2

p2

C3 C4

p3

O

11
16
21
8
5

7
3

5
0

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

25 of 98

p2

I

p1

O

C1 C2

p2

C3 C4

0
11
16
21
8
5
8

7
3
5

p3

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

5
0
11
16
21
8
5
8 28 of 98

I

p1

C1 C2

p2

C3 C4
7

3

p3

O

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

O

5
0
11
16
21
8
5
8 29 of 98

0

8

11

8

7
3

16

5

21

5
I

C1

p1

C2

p2

C3
7

3

p2

C4

p3

Process p1(in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2(in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

Kahn Process Networks:

Determinism

30 of 98

◼ For the same input sequence, the produced output sequence is always the same

◼ These factors entirely determine the outputs of the system:

 Processes

 The network

 Initial tokens

◼ Timing of the processes and channels do not affect the outputs of the system

28 of 98Embedded Systems Design Fö 4

The Modified Network

◼ Consider q3 instead of p3:

 Process q3 first tries channel a or

b, depending on sw, like in the

previous version.

 But, instead of blocking, if

nothing comes after a timeout d, q3

will switch to read a token from the

other channel.

◼ With q3 we do not have a Kahn

process network.

◼ The system is not deterministic.

Process q3(in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive() on timeout(d) do
sw = !sw;
continue;

else
k = b.receive() on timeout(d) do
sw = !sw;
continue;

endif
x.send(k);
sw = !sw;

endloop }

The Modified Network

32 of 98

p2

I

p1

q3

O

C1 C2

p2

C3 C4

5

With an implementation such

that channel C1 is very fast

and C2 is very slow.

The Modified Network

33 of 98

p2

q3

O

C1 C2

p2

C3 C4

8

With an implementation such

that channel C1 is very fast

and C2 is very slow.
I

p1

5

The Modified Network

34 of 98

p2

C2

C4

With an implementation such

that channel C1 is very fast

and C2 is very slow.
21 I

p1

C1 5

8

p2

C3

q3

O

The Modified Network

35 of 98

p2

I

p1

C2

C4

11

With an implementation such

that channel C1 is very fast

and C2 is very slow.

p2

C3 8

q3

O

5
C1 21

The Modified Network

36 of 98

q3

p2

I

p1

O

C2

p2

C3 C4

4

8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5
21

The Modified Network

37 of 98

q3

p2

I

p1

O

C2

p2

C3

8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5
21

4

C4

!!!

The Modified Network

38 of 98

p2 p2

I

p1

C2

C3 C4

8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5
21

4

q3

O

The Modified Network

39 of 98

q3

p2

I

p1

O

C2

p2

C3 C4

4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5
21

The Modified Network

40 of 98

q3

p2

I

p1

O

C2

p2

C3

4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5
21

C4

!!!

The Modified Network

41 of 98

p2

I

p1

C2

p2

C3

4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

C1 11

5 C4

q3

O

21

The Modified Network

42 of 98

p2

C2

4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.
I

p1

C1 11

5

q3

O

21
C4

p2

C3

!!!

The Modified Network

43 of 98

p2

O

C2

p2

C3

4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.
I

p1

C1 11

5

q3

21
C4

The Modified Network

44 of 98

p2

I

p1

C1 C2

p2

C3

5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

21

q3

O

11
C4

The Modified Network

45 of 98

p2

I

p1

C1 C2

5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

21

q3

O

11
C4

p2

C3

!!!

The Modified Network

46 of 98

p2

I

p1

C1 C2

p2

C3

5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

21

q3

O

11
C4

The Modified Network

47 of 98

p2 p2

I

p1

C1 C2

C3 C4

21
5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

11

q3

O

The Modified Network

48 of 98

p2 p2

I

p1

C1 C2

C4

21
5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

11

q3

O

C3

!!!

The Modified Network

49 of 98

p2 p2

I

p1

C1 C2

C3 C4

21
5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

11

q3

O

The Modified Network

50 of 98

q3

p2

I

p1

O

C1 C2

p2

C3 C4

11
21
5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

The Modified Network

51 of 98

q3

p2

I

p1

O

C1 C2

p2

C3 C4

4
11
21
8
5

11
21
5
4
8

With an implementation such

that channel C1 is very fast

and C2 is very slow.

The Modified Network

52 of 98

q3

p2

I

p1

O

C1 C2

p2

C3 C4

4
11
21
8
5

11
21
5
4
8

p2

C1

p2

C3 C4

4
11
21
8

I 5

p1

C2

q3

O
4
8
11
21
5

With an implementation such

that channel C1 is very fast

and C2 is very slow.

With an implementation such

that channel C1 is very slow

and C2 is very fast.

Scheduling of Kahn Process Networks

53 of 98

p1

I

p3

O

C1 C2

p21

C3

p22

C4

◼ Let us imagine we have to implement the

system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3

Scheduling of Kahn Process Networks

54 of 98

p1

I

p3

O

C1 C2

p21

C3

p22

C4

◼ Let us imagine we have to implement the

system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3

The system will block!

Scheduling of Kahn Process Networks

55 of 98

And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

Scheduling of Kahn Process Networks

56 of 98

And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22

Scheduling of Kahn Process Networks

57 of 98

And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22

p1 p1 p21 p22 p3

Scheduling of Kahn Process Networks

58 of 98

◼ Kahn process networks are dynamic dataflow models: their behavior is data

dependent; depending on the input data one or the other process is activated.

◼ Kahn process networks cannot be scheduled statically  It is not possible to derive,

at compile time, a sequence of process activations such that the system does not

block under any circumstances.

Kahn process networks have to be scheduled dynamically  which process to

activate at a certain moment has to be decided, during execution time, based on

the current situation.

There is an overhead in implementing Kahn process networks.

Kahn Process Networks

59 of 98

◼ Another problem: memory overhead with buffers.

Potentially, it is possible that the memory need for buffers grows unlimited.

Possible approaches:

- For some applications and restrictions on inputs, FIFO bounds can be

mathematically derived in design to avoid FIFO overflows

- FIFO bounds can be grown on demand

- Blocking writes can be used so that a process blocks if a FIFO is full (this

deviates from the KPN semantics and may lead to deadlocks, which add further

implementation issues)

◼ Kahn process networks are relatively strong in their expressive power but

sometimes cannot be implemented efficiently.

Introduce more limitations so that you can get efficient implementations.

Synchronous Dataflow Models

60 of 98

◼ Dataflow process networks are a particular case of Kahn process networks.

A particular kind of dataflow process networks, which can be efficiently

implemented, are synchronous dataflow (SDF) networks.

◼ Synchronous dataflow networks are Kahn process networks with restriction:

 At each activation (firing) a process produces and consumes a fixed

number of tokens on each of its outgoing and incoming channels.

 For a process to fire, it must have at least as many tokens on its input

channels as it has to consume.

Synchronous Dataflow Models

61 of 98

◼ Synchronous dataflow models are less expressive than Kahn process

networks:

 With SDF models it is impossible to express conditional firing, where a

process’ firing depends on a certain condition; SDF are static dataflow

models.

Synchronous Dataflow Models

62 of 98

◼ Synchronous dataflow models are less expressive than Kahn process

networks:

 With SDF models it is impossible to express conditional firing, where a

process’ firing depends on a certain condition; SDF are static dataflow

models.

◼ For the above reduced expressiveness, however, we get two nice features of SDF

models:

1. Possibility to produce static schedules.

2. Limited and predictable amount of needed buffer space.

Synchronous Dataflow Models

63 of 98

A

1

1

1

C

1

1

1

B

1

1 1
D

1

◼ Arcs are marked with the number of

tokens produced or consumed.

◼ This is a simple “single-rate” system:

every process is activated one single

time before the system returns to its

initial state.

Synchronous Dataflow Models

64 of 98

A

1

1

1

C

1

1

1

B

1

1 1
D

1

◼ Arcs are marked with the number of

tokens produced or consumed.

◼ This is a simple “single-rate” system:

every process is activated one single

time before the system returns to its

initial state.

Possible static schedule:

A B C D

Synchronous Dataflow Models

65 of 98

Our example from Lecture 1:

T8

T1 T2 T4 T3 T5 T6 T7 T8

A static schedule:

1

T7

1
1

1

T4

1

1

T2

1

1
T1 1

1

1
T3 1

1

1

T5 T6

1 1

1

1

Deriving a static schedule for SDF

67 of 98

2 C

2

1

2
2

D

A 2

1

4 B 1

2

◼ For a correct synchronous dataflow network

there exists a sequence of firings which returns

the network in its original state.

This sequence represents a static schedule

which has to be repeated in a cycle.

◼ The schedule is such that a finite amount of

memory is required (no infinite buffers)

Problem

How to derive such a cyclic schedule?

Deriving a static schedule for SDF

68 of 98

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each

arc the same number of tokens has to be

produced and consumed.

Deriving a static schedule for SDF

69 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each

arc the same number of tokens has to be

produced and consumed.

a, b, c, d: the number of firings, during a

period, for process A, B, C, D.

Deriving a static schedule for SDF

70 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each

arc the same number of tokens has to be

produced and consumed.

a, b, c, d: the number of firings, during a

period, for process A, B, C, D.

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

Deriving a static schedule for SDF

71 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

Deriving a static schedule for SDF

72 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

topology matrix

of the graph

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

Deriving a static schedule for SDF

73 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

topology matrix

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector

Deriving a static schedule for SDF

74 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector

For a given SDF network (graph) we get equation:

q = 0
vector of zeros

topology matrix

Deriving a static schedule for SDF

75 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ If there is no q0 which satisfies the equation

above  there is no static schedule (there is a

rate inconsistency between processes).

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector

For a given SDF network (graph) we get equation:

q = 0
vector of zeros

topology matrix

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

76 of 98

Balance equations:

2a - 4b = 0

b - 2c = 0

2c - d = 0

2b - 2d = 0

2d - a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

a

b

c

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

77 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

78 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

79 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

80 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

81 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

82 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

83 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

84 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

85 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

86 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

◼ Among possible solutions for vector q, we are

interested in the smallest positive integer vector

(smallest sum of the elements).

For our SDF graph, this solution is:

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is

activated during one period.

87 of 98

A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.

Deriving a static schedule for SDF

88 of 98

Solution: a=3, b=2, c=1.

B3 2

4

3
C

2

A 1

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0

Deriving a static schedule for SDF

89 of 98

Solution: a=3, b=2, c=1.

Possible schedule:

B3 2

4

3
C

2

A 1

A A A B B C

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0

Deriving a static schedule for SDF

90 of 98

A

B

A

B 0

C 0

C 0

B3 2

4

3
C

2

A 1

Deriving a static schedule for SDF

91 of 98

A

B

A

A

B 0 2

C 0 0

C 0 1

B

C

3 2

4

3

2

A 1

A

Deriving a static schedule for SDF

92 of 98

A

B

A

A A

B 0 2 4

C 0 0 0

C 0 1 2

B

C

3 2

4

3

2

A 1

A A

Deriving a static schedule for SDF

93 of 98

A

B

A

A A A

B 0 2 4 6

C 0 0 0 0

C 0 1 2 3

B

C

3 2

4

3

2

A 1

A A A

Deriving a static schedule for SDF

94 of 98

A

B

A

A A A B

B 0 2 4 6 3

C 0 0 0 0 2

C 0 1 2 3 3

B

C

3 2

4

3

2

A 1

A A A B

Deriving a static schedule for SDF

95 of 98

A

B

A

A A A B B

B 0 2 4 6 3 0

C 0 0 0 0 2 4

C 0 1 2 3 3 3

B

C

3 2

4

3

2

A 1

A A A B B

Deriving a static schedule for SDF

96 of 98

A

B

A

A A A B B C

B 0 2 4 6 3 0 0

C 0 0 0 0 2 4 0

C 0 1 2 3 3 3 0

B

C

3 2

4

3

2

A 1

A A A B B C

Deriving a static schedule for SDF

97 of 98

A

B

A

A A A B B C

B 0 2 4 6 3 0 0

C 0 0 0 0 2 4 0

C 0 1 2 3 3 3 0

B

C

3 2

4

3

2

A 1

A A A B B C

Buffer space needed:

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared

Deriving a static schedule for SDF

98 of 98

AB

BC

2

A A A B B C

004 6 3

0 040 0 2

1 2 3 3 3 0

0

0

AC 0

total 0 3 6 9 8 7 0

B

C

3 2

4

3

2

A 1

A A A B B C

Buffer space needed:

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared 9

if buffers shared

Deriving a static schedule for SDF

99 of 98

Solution: a=3, b=2, c=1.

Possible schedule:

Another schedule:

B3 2

4

3
C

2

A 1

A A A B B C

A A B A B C

Buffer space needed:

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared 9

if buffers shared

Buffer space needed:

A-B: 4; B-C: 4; A-C: 3;

Total: 11 if buffers not shared 8

if buffers shared

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0

Deriving a static schedule for SDF

100 of

98

◼ With this example we have a rate inconsistency  No static, periodic

schedule with finite buffers is possible.

◼ There is no solution for the equation, different from a=b=c=0.

◼ It is easy to observe that on the arc A → C, tokens continuously accumulate.

1 B

1

1
1

C

A 1

2
1 –1 0 a

0 1 –1 b

2 0 –1 c

= 0

Treatment of Time

101 of

98

◼ Dataflow systems are asynchronous concurrent.

 Events can happen at any time.

 There exists a a partial order of events:

B

D

A

C

- Producing a token by A strictly precedes

consuming a token by B and C.

- There is no order between consuming a

 token by B and consuming a token by C.

	Slide 1: System Design and Methodology / Embedded Systems Design III. Dataflow Models
	Slide 2: DATAFLOW MODELS
	Slide 3: Dataflow Models
	Slide 4: Dataflow Models
	Slide 5: Dataflow Models
	Slide 6: Dataflow Models
	Slide 7: Kahn Process Networks (KPN)
	Slide 8: Kahn Process Networks (KPN)
	Slide 9: Kahn Process Networks
	Slide 10: Kahn Process Networks
	Slide 11: Kahn Process Networks: an Example
	Slide 12: Kahn Process Networks: a Simpler Example
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Kahn Process Networks: Determinism
	Slide 31: The Modified Network
	Slide 32: The Modified Network
	Slide 33: The Modified Network
	Slide 34: The Modified Network
	Slide 35: The Modified Network
	Slide 36: The Modified Network
	Slide 37: The Modified Network
	Slide 38: The Modified Network
	Slide 39: The Modified Network
	Slide 40: The Modified Network
	Slide 41: The Modified Network
	Slide 42: The Modified Network
	Slide 43: The Modified Network
	Slide 44: The Modified Network
	Slide 45: The Modified Network
	Slide 46: The Modified Network
	Slide 47: The Modified Network
	Slide 48: The Modified Network
	Slide 49: The Modified Network
	Slide 50: The Modified Network
	Slide 51: The Modified Network
	Slide 52: The Modified Network
	Slide 53: Scheduling of Kahn Process Networks
	Slide 54: Scheduling of Kahn Process Networks
	Slide 55: Scheduling of Kahn Process Networks
	Slide 56: Scheduling of Kahn Process Networks
	Slide 57: Scheduling of Kahn Process Networks
	Slide 58: Scheduling of Kahn Process Networks
	Slide 59: Kahn Process Networks
	Slide 60: Synchronous Dataflow Models
	Slide 61: Synchronous Dataflow Models
	Slide 62: Synchronous Dataflow Models
	Slide 63: Synchronous Dataflow Models
	Slide 64: Synchronous Dataflow Models
	Slide 65: Synchronous Dataflow Models
	Slide 67: Deriving a static schedule for SDF
	Slide 68: Deriving a static schedule for SDF
	Slide 69: Deriving a static schedule for SDF
	Slide 70: Deriving a static schedule for SDF
	Slide 71: Deriving a static schedule for SDF
	Slide 72: Deriving a static schedule for SDF
	Slide 73: Deriving a static schedule for SDF
	Slide 74: Deriving a static schedule for SDF
	Slide 75: Deriving a static schedule for SDF
	Slide 76: Deriving a static schedule for SDF
	Slide 77: Deriving a static schedule for SDF
	Slide 78: Deriving a static schedule for SDF
	Slide 79: Deriving a static schedule for SDF
	Slide 80: Deriving a static schedule for SDF
	Slide 81: Deriving a static schedule for SDF
	Slide 82: Deriving a static schedule for SDF
	Slide 83: Deriving a static schedule for SDF
	Slide 84: Deriving a static schedule for SDF
	Slide 85: Deriving a static schedule for SDF
	Slide 86: Deriving a static schedule for SDF
	Slide 87: Deriving a static schedule for SDF
	Slide 88: Deriving a static schedule for SDF
	Slide 89: Deriving a static schedule for SDF
	Slide 90: Deriving a static schedule for SDF
	Slide 91: Deriving a static schedule for SDF
	Slide 92: Deriving a static schedule for SDF
	Slide 93: Deriving a static schedule for SDF
	Slide 94: Deriving a static schedule for SDF
	Slide 95: Deriving a static schedule for SDF
	Slide 96: Deriving a static schedule for SDF
	Slide 97: Deriving a static schedule for SDF
	Slide 98: Deriving a static schedule for SDF
	Slide 99: Deriving a static schedule for SDF
	Slide 100: Deriving a static schedule for SDF
	Slide 101: Treatment of Time

