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◼ Systems are specified as directed graphs where:

 nodes represent computations (processes);

 arcs represent totally ordered sequences (streams) of data (tokens).
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◼ Systems are specified as directed graphs where:
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◼ Depending on their particular semantics, several models of computation based 

on dataflow have been defined:

 Kahn process networks

 Dataflow process networks
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◼ Systems are specified as directed graphs where:

 nodes represent computations (processes);

 arcs represent totally ordered sequences (streams) of data (tokens).

◼ Depending on their particular semantics, several models of computation based 

on dataflow have been defined:

 Kahn process networks

 Dataflow process networks

 Synchronous dataflow

 - - - - - - -

◼ Dataflow models are suitable for signal-processing algorithms:

 Code/decode, filter, compression, etc.

 Streams of periodic and regular data samples
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Process p1( in int a, out int x, out int y) {
...............

}

Process p2( in int a, out int x) {
...............

}

Process p3( in int a, out int x) {
...............

}

Process p4( in int a, in int b, out int x) {
...............

}

channel int I, O, C1, C2, C3, C4; 

p1(I, C1, C2);

p2(C1, C3);

p3(C2, C4);

p4(C3, C4, O);

p3

I

p1

C1 C2

p2

C3 C4

p4

O

◼ The internal computation of a 

process can be specified in any 

programming language (e.g. C).

This is called the host language.
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◼ Processes communicate by passing data tokens through unidirectional FIFO 

channels.

◼ Writes to the channel are non-blocking.

◼ Reads are blocking:

 the process is blocked until there is sufficient data in the channel
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◼ Processes communicate by passing data tokens through unidirectional FIFO 

channels.

◼ Writes to the channel are non-blocking.

◼ Reads are blocking:

 the process is blocked until there is sufficient data in the channel

A process that tries to read from an empty 

channel waits until data is available. It cannot 

ask whether data is available before reading 

and, for example, if there is no data, decide not 

to read that channel.

DETERMINISM
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◼ Kahn process networks are deterministic:

 For a given sequence of inputs, there is only one possible sequence of 

outputs (regardless, for example, how long time it takes for a certain 

computation or communication to finish).

Looking only at the specification (and not knowing anything about 

implementation) you can exactly derive the output sequence 

corresponding to a given input sequence.
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◼ More on read and write limitations

 A process cannot wait for data on more than one channel at a time

 Only a single process is allowed to read from a certain channel

◼ What if the output data has to be sent to more than one process?

 Data must be duplicated inside processes

◼ This limited model of computation implies:

 More modeling effort for complex systems

 Retained determinism!
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KPN model of encoder for Motion JPEG (M-JPEG) video compression format:
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Kahn Process Networks: a Simpler Example
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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Process p1( in int a, out int x, out int y){
int k;
loop

k = a.receive();
if k mod 2 == 0 then

x.send(k);
else

y.send(k);
endif

endloop }

Process p2( in int a, out int x){
int k;
loop

k = a.receive();
x.send(k);

endloop }

Process p3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

endif
x.send(k);
sw = !sw;

endloop }

Channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);
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◼ For the same input sequence, the produced output sequence is always the same

◼ These factors entirely determine the outputs of the system:

 Processes

 The network

 Initial tokens

◼ Timing of the processes and channels do not affect the outputs of the system
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The Modified Network

◼ Consider q3 instead of p3:

 Process q3 first tries channel a or 

b, depending on sw, like in the 

previous version.

 But, instead of blocking, if 

nothing comes after a timeout d, q3 

will switch to read a token from the 

other channel.

◼ With q3 we do not have a Kahn 

process network.

◼ The system is not deterministic.

Process q3( in int a, in int b, out int x){
int k;
bool sw = true;
loop

if sw then
k = a.receive() on timeout(d) do
sw = !sw;
continue;

else
k = b.receive() on timeout(d) do
sw = !sw;
continue;

endif
x.send(k);
sw = !sw;

endloop }
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that channel C1 is very fast 

and C2 is very slow.
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q3 
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With an implementation such 

that channel C1 is very fast 

and C2 is very slow.



The Modified Network

51 of 98

q3
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p1
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C1 C2

p2

C3 C4

4
11
21
8
5

11
21
5
4
8

With an implementation such 

that channel C1 is very fast 

and C2 is very slow.
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q3

p2

I

p1

O

C1 C2
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C3 C4
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p2

C1

p2

C3 C4

4
11
21
8

I 5

p1

C2

q3

O 
4
8
11
21
5

With an implementation such 

that channel C1 is very fast 

and C2 is very slow.

With an implementation such 

that channel C1 is very slow 

and C2 is very fast.
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p1

I

p3

O

C1 C2

p21

C3

p22

C4

◼ Let us imagine we have to implement the 

system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3



Scheduling of Kahn Process Networks

54 of 98

p1

I

p3

O

C1 C2

p21

C3

p22

C4

◼ Let us imagine we have to implement the 

system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p22 p3

The system will block!
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And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3
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And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22
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And all other schedules will block:

I

p1

p3

O

C1 C2

p21

C3

p22

C4

p1 p22 p21 p3

p1 p21 p3 p22

p1 p1 p21 p22 p3
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◼ Kahn process networks are dynamic dataflow models: their behavior is data 

dependent; depending on the input data one or the other process is activated.

◼ Kahn process networks cannot be scheduled statically  It is not possible to derive, 

at compile time, a sequence of process activations such that the system does not 

block under any circumstances.

Kahn process networks have to be scheduled dynamically  which process to 

activate at a certain moment has to be decided, during execution time, based on 

the current situation.

There is an overhead in implementing Kahn process networks.
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◼ Another problem: memory overhead with buffers.

Potentially, it is possible that the memory need for buffers grows unlimited.

Possible approaches:

- For some applications and restrictions on inputs, FIFO bounds can be 

mathematically derived in design to avoid FIFO overflows

- FIFO bounds can be grown on demand

- Blocking writes can be used so that a process blocks if a FIFO is full (this 

deviates from the KPN semantics and may lead to deadlocks, which add further 

implementation issues)

◼ Kahn process networks are relatively strong in their expressive power but 

sometimes cannot be implemented efficiently.

Introduce more limitations so that you can get efficient implementations.
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◼ Dataflow process networks are a particular case of Kahn process networks.

A particular kind of dataflow process networks, which can be efficiently 

implemented, are synchronous dataflow (SDF) networks.

◼ Synchronous dataflow networks are Kahn process networks with restriction:

 At each activation (firing) a process produces and consumes a fixed 

number of tokens on each of its outgoing and incoming channels.

 For a process to fire, it must have at least as many tokens on its input 

channels as it has to consume.
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◼ Synchronous dataflow models are less expressive than Kahn process 

networks:

 With SDF models it is impossible to express conditional firing, where a 

process’ firing depends on a certain condition; SDF are static dataflow 

models.
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◼ Synchronous dataflow models are less expressive than Kahn process 

networks:

 With SDF models it is impossible to express conditional firing, where a 

process’ firing depends on a certain condition; SDF are static dataflow 

models.

◼ For the above reduced expressiveness, however, we get two nice features of SDF 

models:

1. Possibility to produce static schedules.

2. Limited and predictable amount of needed buffer space.
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A

1

1

1

C 

1

1

1

B 

1

1 1
D

1

◼ Arcs are marked with the number of 

tokens produced or consumed.

◼ This is a simple “single-rate” system: 

every process is activated one single 

time before the system returns to its 

initial state.
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A

1

1

1

C 

1

1

1

B 

1

1 1
D

1

◼ Arcs are marked with the number of 

tokens produced or consumed.

◼ This is a simple “single-rate” system: 

every process is activated one single 

time before the system returns to its 

initial state.

Possible static schedule:

A B C D
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Our example from Lecture 1:

T8

T1 T2 T4 T3 T5 T6 T7 T8

A static schedule:

1

T7

1
1

1

T4

1

1

T2 

1

1 
T1 1

1

1 
T3 1

1

1

T5 T6

1 1

1

1
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2 C

2

1

2
2 

D

A 2

1

4 B 1

2

◼ For a correct synchronous dataflow network 

there exists a sequence of firings which returns 

the network in its original state.

This sequence represents a static schedule 

which has to be repeated in a cycle.

◼ The schedule is such that a finite amount of 

memory is required (no infinite buffers)

Problem

How to derive such a cyclic schedule?
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2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each 

arc the same number of tokens has to be 

produced and consumed.
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each 

arc the same number of tokens has to be 

produced and consumed.

a, b, c, d: the number of firings, during a 

period, for process A, B, C, D.
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ Along the periodic sequence of firing, on each 

arc the same number of tokens has to be 

produced and consumed.

a, b, c, d: the number of firings, during a 

period, for process A, B, C, D.

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

topology matrix 

of the graph

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

topology matrix

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector

For a given SDF network (graph) we get equation:

q = 0
vector of zeros

topology matrix



Deriving a static schedule for SDF

75 of 98

Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

◼ If there is no q0 which satisfies the equation 

above  there is no static schedule (there is a 

rate inconsistency between processes).

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2

of the graph
firing vector

For a given SDF network (graph) we get equation:

q = 0
vector of zeros

topology matrix
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◼ Among possible solutions for vector q, we are 

interested in the smallest positive integer vector 

(smallest sum of the elements).

For our SDF graph, this solution is: 

a=4, b=2, c=1, d=2.

a, b, c, d indicate how often each task is 

activated during one period.
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Balance equations: 

2a - 4b = 0

b - 2c = 0 

2c -  d = 0 

2b - 2d = 0

2d -  a = 0

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

a 

b 

c 

d

= 0

2 –4 0 0

0 1 –2 0

0 0 2 –1

0 2 0 –2

–1 0 0 2
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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A possible schedule:
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For a given SDF network (graph) we get equation:
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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◼ Among possible solutions for vector q, we are 

interested in the smallest positive integer vector 

(smallest sum of the elements).

For our SDF graph, this solution is: 
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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◼ Among possible solutions for vector q, we are 

interested in the smallest positive integer vector 

(smallest sum of the elements).

For our SDF graph, this solution is: 
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a, b, c, d indicate how often each task is 
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A possible schedule:

2 C

2

1

2

D

A 2

1

2

4 B 1

2

For a given SDF network (graph) we get equation:

q = 0

A A B A A B C D D

The schedule is possible, without deadlock, only if 4 initial tokens are provided

on the channel D → A.
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Solution: a=3, b=2, c=1.

B3 2

4

3 
C

2

A 1

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0
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Solution: a=3, b=2, c=1.

Possible schedule:

B3 2

4

3 
C

2

A 1

A A A B B C

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0
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A 

B

A

B 0

C 0

C 0

B3 2

4

3 
C

2

A 1
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A

B 

A

A

B 0 2

C 0 0

C 0 1

B

C

3 2

4

3

2

A 1

A
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A

B 

A

A A

B 0 2 4

C 0 0 0

C 0 1 2

B

C

3 2

4

3

2

A 1

A A
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A

B 

A

A A A

B 0 2 4 6

C 0 0 0 0

C 0 1 2 3

B

C

3 2

4

3

2

A 1

A A A
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A

B 

A

A A A B

B 0 2 4 6 3

C 0 0 0 0 2

C 0 1 2 3 3

B

C

3 2

4

3

2

A 1

A A A B
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A

B 

A

A A A B B

B 0 2 4 6 3 0

C 0 0 0 0 2 4

C 0 1 2 3 3 3

B

C

3 2

4

3

2

A 1

A A A B B
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A

B 

A

A A A B B C

B 0 2 4 6 3 0 0

C 0 0 0 0 2 4 0

C 0 1 2 3 3 3 0

B

C

3 2

4

3

2

A 1

A A A B B C
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A

B 

A

A A A B B C

B 0 2 4 6 3 0 0

C 0 0 0 0 2 4 0

C 0 1 2 3 3 3 0

B

C

3 2

4

3

2

A 1

A A A B B C

Buffer space needed: 

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared
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AB

BC

2

A A A B B C

004 6 3

0 040 0 2

1 2 3 3 3 0

0

0

AC 0

total 0 3 6 9 8 7 0

B

C

3 2

4

3

2

A 1

A A A B B C

Buffer space needed: 

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared 9 

if buffers shared
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Solution: a=3, b=2, c=1.

Possible schedule:

Another schedule:

B3 2

4

3 
C

2

A 1

A A A B B C

A A B A B C

Buffer space needed: 

A-B: 6; B-C: 4; A-C: 3;

Total: 13 if buffers not shared 9 

if buffers shared

Buffer space needed: 

A-B: 4; B-C: 4; A-C: 3;

Total: 11 if buffers not shared 8 

if buffers shared

2 –3 0 a

0 2 –4 b

1 0 –3 c

= 0
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◼ With this example we have a rate inconsistency  No static, periodic 

schedule with finite buffers is possible.

◼ There is no solution for the equation, different from a=b=c=0.

◼ It is easy to observe that on the arc A → C, tokens continuously accumulate.

1 B

1

1
1 

C

A 1

2
1 –1 0 a

0 1 –1 b

2 0 –1 c

= 0
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◼ Dataflow systems are asynchronous concurrent.

 Events can happen at any time.

 There exists a a partial order of events:

B

D

A

C

- Producing a token by A strictly precedes 

consuming a token by B and C.

- There is no order between consuming a 

 token by B and consuming a token by C.
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